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A new theoretical approach for turbulent flows based on Lie-group analysis is pre-
sented. It unifies a large set of ‘solutions’ for the mean velocity of stationary parallel
turbulent shear flows. These results are not solutions in the classical sense but in-
stead are defined by the maximum number of possible symmetries, only restricted
by the flow geometry and other external constraints. The approach is derived from
the Reynolds-averaged Navier–Stokes equations, the fluctuation equations, and the
velocity product equations, which are the dyad product of the velocity fluctuations
with the equations for the velocity fluctuations. The results include the logarithmic
law of the wall, an algebraic law, the viscous sublayer, the linear region in the centre
of a Couette flow and in the centre of a rotating channel flow, and a new exponential
mean velocity profile not previously reported that is found in the mid-wake region
of high Reynolds number flat-plate boundary layers. The algebraic scaling law is
confirmed in both the centre and the near-wall regions in both experimental and
DNS data of turbulent channel flows. In the case of the logarithmic law of the wall,
the scaling with the distance from the wall arises as a result of the analysis and has
not been assumed in the derivation. All solutions are consistent with the similarity
of the velocity product equations to arbitrary order. A method to derive the mean
velocity profiles directly from the two-point correlation equations is shown.

1. Introduction
Under certain boundary and initial conditions, turbulent flows exhibit self-similar

behaviour; some examples are jets, wakes, free and bounded shear flows. Von
Kármán’s law of the wall and Kolmogorov’s inertial subrange also may be considered
self-similar solutions in a certain flow regime. These findings lead to the hypothesis
that turbulent flows locally tend to a self-similar state, provided the boundary and
initial conditions are consistent. We obtain new solutions, which have not previously
been found by dimensional analysis.

The logarithmic law was first derived by von Kármán (1930) using empirical models
and dimensional arguments. Later Millikan (1939) derived the law of the wall more
formally using the so called ‘velocity defect law’, which was also introduced by von
Kármán (1930). Even though Millikan’s derivation was much more comprehensive
from a mathematical point of view, the velocity defect law has to be revised according
to the present approach. This will be explained in detail in § 4.1. Yajnik (1970) and
later Mellor (1972), extending Yajnik’s work, derived the law of the wall using
asymptotic methods solely based on the Navier–Stokes equations. Asymptotic forms
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of the law of the wall, the velocity defect law, and the law of the wake have been
obtained. However, no analytic functional form was found for the velocity defect law
or the law of the wake.

Recently, some doubts have been expressed as to whether the appropriate wall-layer
form is logarithmic or algebraic. Barenblatt (1993) developed an algebraic scaling law
based on the idea of incomplete similarity with respect to the local Reynolds num-
ber. The proposed scaling law involves a special Reynolds number dependence of
the power exponent and the multiplicative factor. The familiar logarithmic law is
shown to be closely related to the envelope of a family of curves obeying power
laws. George, Castillo & Knecht (1993) used an asymptotic invariance principle for
zero-pressure-gradient turbulent boundary layer flows to suggest that the profiles in
an overlap region between the inner and outer regions are power laws. In the limit
of infinite Reynolds number, the usual logarithmic law of the wall was recovered in
the inner region.

In the present approach a variety of scaling laws including the logarithmic and
the algebraic law will be derived employing ideas from Lie group analysis. In a
series of papers Ünal and Ibragimov (Ünal 1994, 1995; Ibragimov & Ünal 1994)
have applied Lie group methods to Kolmogorov’s inertial-subrange hypothesis. In the
methodology of group theory the dissipation rate, as it was introduced by Kolmogorov,
can be viewed as an invariant. Considering this, Ünal and Ibragimov investigated
the symmetry properties of the Navier–Stokes equations and proposed a combined
scaling group by imposing the dissipation rate invariance. As a result, they have
shown that there are solutions of the Navier–Stokes equations which are consistent
with Kolmogorov’s proposal. However, the presented result is only a necessary and
not a sufficient condition since it was not shown that the dissipation rate is always
an invariant of turbulent flows if the Reynolds number tends to infinity.

In this paper, it will be shown by applying Lie group ideas to the Navier–Stokes
equations that the von Kármán law of the wall is by no means the only non-trivial
self-similar mean velocity profile which may be given explicitly. The set of mean
velocity profiles obtained includes an algebraic law in the centre of a channel flow
and in the near wall region, the viscous sublayer, the linear mean velocity in the
centre of a Couette flow, the linear mean velocity in the centre of a rotating channel
flow, and an exponential mean velocity profile. The exponential law in particular
has not previously been reported in the literature. Here it is shown that such a law
describes the outer part of a boundary layer flow over a flat plate and is in fact
an explicit form of the velocity defect law. The word ‘solution’ used in the present
context is somewhat different to its classical definition. For any of the turbulent flows
mentioned above explicit mean velocity profiles are determined due to the maximum
number of symmetries, only restricted by geometrical and other external constraints.

An introduction to the basic methodology of Lie’s theory is given in the books by
Bluman & Kumei (1989) and Stephani (1989).

The paper is organized as follows. In § 2 the governing equations are derived and
the three major differences between the present approach and the classical approach
using the Reynolds stress tensor equations (Townsend 1976) will be pointed out in
detail. In § 3 the Lie group analysis and the somewhat different solution definition
are described and the results for the self-similar mean flow profiles are given. In § 4
the new self-similar mean velocity profiles, also called scaling laws, are compared
with experimental and direct numerical simulation (DNS) data. In the last section the
results will be discussed and their applications to turbulence modelling are pointed out.
Appendix A gives a proof that the self-similar profiles are also consistent with higher-
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order velocity product equations. In Appendix B, all the self-similar mean velocities
mentioned above have also been obtained by application of the Lie group analysis
to the two-point correlation. Here also some new results regarding self-similarity of
the two-point correlation tensor are obtained. In addition, a new non-parametric
symmetry of the two-point correlation tensor in the log region is established.

2. Governing equations
Consider the incompressible Navier–Stokes equations in a constantly rotating

frame,

∂Ui

∂t
+Uk

∂Ui

∂xk
= −∂P

∂xi
+ ν

∂2Ui

∂xk∂xk
− 2Ωk eikl Ul (2.1)

and the continuity equation

∂Uk

∂xk
= 0 (2.2)

whereUi, P , ν and Ωk are, respectively, the instantaneous velocity, pressure normalized
by the density, kinematic viscosity and the angular rotation rate of the frame of
reference relative to the inertial frame. Centrifugal forces have been absorbed into
the pressure. Throughout the paper the Einstein summation convention has been
employed.

The standard Reynolds decomposition is given by

Ui = ūi + ui and P = p̄+ p, (2.3)

where the overbar denotes an ensemble average, defined as

ūi = lim
n→∞

1

n

n∑
k=1

U
(k)
i , p̄ = lim

n→∞
1

n

n∑
k=1

P
(k)
i . (2.4)

From these the Reynolds-averaged Navier–Stokes equation follows

∂ūi

∂t
+ ūk

∂ūi

∂xk
= − ∂p̄

∂xi
+ ν

∂2ūi

∂x2
k

− ∂uiuk

∂xk
− 2Ωk eikl ūl . (2.5)

The fluctuation equations yield

∂ui

∂t
+ ūk

∂ui

∂xk
+ uk

∂ūi

∂xk
− ∂uiuk

∂xk
+
∂uiuk

∂xk
+
∂p

∂xi
− ν ∂

2ui

∂x2
k

+ 2Ωk eikl ul = 0. (2.6)

The corresponding continuity equations for ūi and ui are

∂ūk

∂xk
= 0, (2.7a)

C =
∂uk

∂xk
= 0. (2.7b)

In the case of a pressure-driven flow in the x1-direction, the mean pressure p̄ is
replaced by −x1K + p̄(x2), where K is a constant pressure gradient. The only axis
of frame rotation to be considered is perpendicular to the mean shear, and hence
Ω = Ω3. The present analysis is restricted to stationary parallel shear flows

∂ū1

∂x1

=
∂ū1

∂x3

=
∂ū1

∂t
=

∂p̄

∂x1

=
∂p̄

∂x3

=
∂p̄

∂t
= ū2 = ū3 = 0, (2.8)
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and hence ū1 and p̄ are only functions of the remaining spatial coordinate x2. Thus,
(2.5) reduces to

K + ν
∂2ū1

∂x2
2

− ∂u1u2

∂x2

= 0, (2.9a)

− ∂p̄

∂x2

− ∂u2u2

∂x2

− 2Ω ū1 = 0, (2.9b)

∂u3u2

∂x2

= 0, (2.9c)

and (2.6) becomes

∂ui

∂t
+ ū1

∂ui

∂x1

+ δi1u2

dū1

dx2

− duiu2

dx2

+
∂uiuk

∂xk
+
∂p

∂xi
− ν ∂

2ui

∂x2
k

+ 2Ω ei3l ul = 0. (2.10)

The continuity equation (2.7a) for the mean velocity is trivially satisfied. It should be
noted here that there is no restriction on the spatial or temporal dependence on the
fluctuating quantities u and p.

The equations (2.9) are now rewritten and unified with the equation for the
fluctuation (2.10) by solving (2.9a) and (2.9b) for the gradient of the Reynolds stresses
and using the result in (2.10),

Ni (x) =
∂ui

∂t
+ ū1

∂ui

∂x1

+ δi1u2

dū1

dx2

− δi1
(
K + ν

∂2ū1

∂x2
2

)

+δi2

(
∂p̄

∂x2

+ 2Ω ū1

)
+
∂uiuk

∂xk
+
∂p

∂xi
− ν ∂

2ui

∂x2
k

+ 2Ω ei3l ul = 0. (2.11)

The system of equations (2.11) describes the fluctuation and mean of a parallel tur-
bulent shear flow. The set of equations is under-determined since the mean quantities
are not known a priori. In the classical approach of finding turbulent scaling laws,
this difficulty has motivated the introduction of second-moment equations (Townsend
1976). In the next section, the above set of equations (2.7b), (2.8) and (2.11) will be
analysed with regard to its symmetry properties alone, without the introduction of
higher-order correlation equations which contain more non-closed terms.

In order to do this, another equation is introduced which is derived from (2.11). It
will be referred to as the ‘instantaneous velocity product’ equation

Ni uj +Nj ui = 0. (2.12)

Usually, the Reynolds-averaged Navier–Stokes equation (2.5) and its simplification
for plane shear flows (2.9a–c) have to be supplied with closure assumptions regarding
the Reynolds stress tensor uiuj . The common procedure to obtain transport equations
for uiuj is Reynolds averaging (2.12). The purpose of (2.12) regarding the symmetry
properties of plane shear flows is quite different as will be pointed out in § 3.1.

3. Lie point symmetries in turbulent parallel shear flows
Suppose the system of partial differential equations under investigation is given by

F (y, z, z(1), z(2), . . .) = 0, (3.1)
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where y and z are the independent and the dependent variables respectively and
z(n) refers to all nth-order derivatives of any component of z with respect to any
component of y. A transformation

y = φ(y∗, z∗) and z = ψ(y∗, z∗) (3.2)

is called a symmetry or symmetry transformation of equation (3.1) if the following
equivalence holds:

F (y, z, z(1), z(2), . . .) = 0 ⇐⇒ F (y∗, z∗, z∗(1)
, z∗(2)

, . . .) = 0, (3.3)

i.e. the transformation (3.2) substituted into (3.1) does not change the form of equation
(3.1) if written in the new variables y∗ and z∗.

In the present approach the classical group analysis is modified towards an equiv-
alence transformation. It is assumed that the equations under investigation are trans-
formed to equations of the same family. This means that given a set of differential
equations containing one or several free functions the equivalence transformation
does not change the structure of the differential equation. However the free functions
may be altered in form. Hence the differential equation is not transformed to an
identical equation in a strict sense but to one which is identical in form apart from
the free functions.

In the present context the quantities ν, p̄ and particularly the mean velocity ū1

may exhibit different forms in the equations (2.7b)–(2.12) under the transformation.
Hence, subsequently, different submodels or subclasses will be considered especially
those depending on the functional form of ū1. We focus specifically on those mean
velocities which allow a large number of symmetries in the equations (2.7b)–(2.12).
The latter is essentially the ‘maximum symmetry principle’ determining ū1, which will
be explained in some more detail below.

Though in principle only simple algebraic calculations need to be performed the
above concepts applied to systems of partial differential equations can be extremely
tedious and lengthy if the number of equations is larger than two or the equations
contain derivatives of order higher than two. Lie’s procedure to find symmetry trans-
formations and the derivation of self-similar solutions may be divided into three
parts. The first one, the computation of the determining system, is completely algo-
rithmic. Several Lie group software packages for the computation of the determining
system have been developed. All the presented results have been obtained with the
aid of SYMMGRP.MAX, a software package for MACSYMA (1996) written by
Champagne, Hereman & Winternitz (1991). The second part, the solution of the
determining system, which is a linear over-determined system of partial differential
equations, must be done by hand. The last part, the computation of the similarity
variables, involves the solution of first-order differential equations which are usually
easy to solve.

The set of variables considered in the calculation below consists of

y = [x1, x2, x3, t, ν] and z = [u1, u2, u3, p, ū1, p̄], (3.4)

where y and z represent the independent and dependent variables respectively. The
usual purpose of the symmetry analysis is to find all those invertible transformations,

y∗ = [x∗1, x∗2, x∗3, t∗, ν∗] = φ(y, z; ε),

z∗ = [u∗1, u∗2, u∗3, p∗, ū∗1, p̄∗] = ψ(y, z; ε),

}
(3.5)

which, in the consideration of (2.8), preserve the functional form of (2.7b), (2.11), and
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(2.12) written in the new variables y∗ and z∗. In other words, a transformation of the
form (3.5) will be computed so that the following equivalence holds:

C = 0 ⇐⇒ C∗ = 0, (3.6a)

Ni = 0 ⇐⇒ N∗
i = 0, (3.6b)

(Ni uj +Nj ui) = 0 ⇐⇒ (Ni uj +Nj ui)∗ = 0. (3.6c)

The superscript ∗ of any quantity denotes its evaluation according to the transfor-
mation (3.5). The transformations φ and ψ are invertible mappings which depend
on the group parameter ε. Here, viscosity will also be introduced as an additional
independent variable. Allowing a parameter such as ν to vary is also part of the
equivalence transformation. In the present context this is justified since viscosity may
be considered the inverse of the Reynolds number because ν ∼ 1/Re. In most practi-
cal applications the Reynolds number can be varied arbitrarily. The idea of varying ν
may have been first applied to Navier–Stokes equations in their classical form by Ünal
(1994). In the present investigation the equivalence transformation allows a Reynolds
number dependence of the scaling law coefficients. However, beside this modification
all the scaling laws originate purely from the inviscid forces in the Navier–Stokes
equations as can also be taken from the inviscid two-point approach in Appendix B.

It should be noted that a transformation of the form (3.4) does not imply any
dependence among variables. It only refers to a transformation to a new set of
variables here denoted by an asterisk. In particular it does not indicate any spatial or
time dependence of the molecular viscosity.

Lie has shown that if a transformation has group properties it can be represented
by its infinitesimal form. For the transformation (3.5) this means that it can be be
expanded for small ε:

y∗ = y + ε
∂φ

∂ε

∣∣∣∣
ε=0

+ O(ε2) = y + ε ξ(y, z) + O(ε2),

z∗ = z + ε
∂ψ

∂ε

∣∣∣∣
ε=0

+ O(ε2) = z + ε η(y, z) + O(ε2).

 (3.7)

From this expansion only the terms of order ε need to be considered since the global
form of the transformation can be recovered by employing Lie’s differential equation

dy∗

dε
= ξ(y∗, z∗) and

dz∗

dε
= η(y∗, z∗) (3.8)

subject to the initial conditions

y∗(ε = 0) = y and z∗(ε = 0) = z. (3.9)

The terms ξ and η are called infinitesimals.
Omitting all the higher-order terms, the elements of y∗ and z∗ in (3.7) may be

rewritten as

x∗1 = x1 + εξx1
, x∗2 = x2 + εξx2

, x∗3 = x3 + εξx3
, t∗ = t+ εξt, ν

∗ = ν + εξν ,

u∗1 = u1 + εηu1
, u∗2 = u2 + εηu2

, u∗3 = u3 + εηu3
,

p∗ = p+ εηp, ū
∗
1 = ū1 + εηū1

, p̄∗ = p̄+ εηp̄,

 (3.10)

where, instead of the mapping φ and ψ, only the infinitesimal generators ξ and η need
to be determined. The subscripts of the elements of ξ and η indicate the variables they
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refer to and are not to be mistaken as derivatives. Given the infinitesimal generators
ξ and η, the global transformations φ and ψ are uniquely determined by (3.8) and
(3.9). The major advantage of the infinitesimal approach is that the equations for the
infinitesimal generators are linear and, generally, easy to solve.

Practically speaking, it is impossible to determine φ and ψ from (3.6a–c) using the
global transformation (3.5) directly, as this results in a large, over-determined system
of non-linear PDEs for φ and ψ which is intractable to solve.

In order to obtain the infinitesimals ξ and η, (3.10) is inserted into the equations
(3.6a–c) and expanded with respect to ε. For example, introducing (3.10) into the
equation on the right-hand side of (3.6a) reduces it to C∗ = C+ εXC+O(ε2). Making
use of the equation on the left-hand side of (3.6a), the leading-order equation reduces
to XC = 0, where use has already been made of the fact that only terms of order ε
need to be considered. Here, X is the operator

X = ξx1

∂

∂x1

+ ξx2

∂

∂x2

+ ξx3

∂

∂x3

+ ξt
∂

∂t
+ ξν

∂

∂ν

+ηu1

∂

∂u1

+ ηu2

∂

∂u2

+ ηu3

∂

∂u3

+ ηp
∂

∂p
+ ηū1

∂

∂ū1

+ ηp̄
∂

∂p̄
+ Xp (3.11)

and Xp is referred to as the ‘prolongation’ up to the second order. The prolongation
appears due to the infinitesimal transformation of the derivatives and it leads to
derivatives of the generators ξ and η. This may be verified by calculating the deriva-
tives of the dependent variable with respect to the independent variables using the
infinitesimal transformation (3.10). Expanding in ε and keeping only terms to order ε
the form of the prolongation may be obtained.

Extending the procedure described above for the continuity equation to the other
equations under investigation namely (2.7b), (2.11), and (2.12), their symmetries can
be determined by applying the operator (3.11) to them. This results in the set of
equations

XC|C=0 = 0, (3.12a)

XNi |Ni =0 = 0, (3.12b)

X(Ni uj +Nj ui)|(Ni uj+Nj ui)=0 = 0, (3.12c)

which has to be furnished by the geometrical restrictions (2.8). The equations (3.12a–c)
may be considered as a set of equations for ξ and η, containing all variables y and
z including all derivatives of only u1, u2, u3, p, ū1, p̄ with respect to all independent
variables x1, x2, x3, t, ν, up the second order. Each of the variables in y and z and
its derivatives needs to be considered an independent variable. Since the equations
(3.12a–c) have to be solved for all values of the latter variables, a large over-determined
system of linear equations for ξ and η has to be solved. The solution will be given in
the following two subsections.

The present approach of equivalence transformations takes into account that the
system (2.7b), (2.11), and (2.12) comprises variables which exhibit chaotic and non-
chaotic character. By definition the mean quantities ū and p̄ are ‘smooth’ functions
of space and time. In contrast, the fluctuating quantities u and p exhibit chaotic
behaviour.

This procedure implies two immediate consequences leading to the definition of
the ‘maximum symmetry principle’ to be pointed out below. First, the equivalence
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transformation technique does not indicate a similarity solution for both the mean
and the fluctuating quantities as it is the usual result employing classical Lie group
analysis. Instead, the fluctuating quantities may still exhibit a chaotic behaviour.

Second, and most important, the mean velocities obtained by this method are not
a solution of any equation in the classical sense. They are merely a consequence of
the assumption that the mean velocity adjusts itself such that the maximum number
of combined symmetries is established. This is to be defined in the following.

The fact that certain chaotic spatio-temporal systems admit a wider degree of
symmetries is well documented for several systems (see e.g. Dellnitz, Golubitsky
& Melbourne 1992; Field & Golubitsky 1995; Ning et al. 1993). These additional
symmetries appear beyond a certain threshold of a bifurcating parameter which may
in the present context be identified as the Reynolds number.

In fact, Kolmogorov’s inertial-subrange theory of locally isotropic turbulence may
be regarded as an example of the above finding. The theory of isotropic turbulence
comprises invariance under the full rotation group, translation in space and time and
Galilean invariance. Hence, isotropic turbulence admits invariance under a very large
number of symmetry groups.

In contrast such a high degree of invariance under many distinct groups cannot
be expected for large-scale quantities and a much less restrictive definition of a
‘maximum symmetry principle’ may be introduced in the present context.

Symmetry groups of differential equations span a linear vector space and hence
can be linearly combined. Strictly speaking a given linear combination of symmetries
constitutes only a single symmetry. Hence, in the following we define the ‘maximum
symmetry principle’ by assuming that the mean flow quantities establish themselves
such that a maximum of linearly combined symmetries is the basis for the flow profiles.
These symmetries are only restricted by boundary conditions and other external
constraints. For simplicity we frequently denote these mean velocities as solutions.

Though it is known that the mean quantities have a strong tendency towards a
high degree of symmetry and similarity this is usually only observed in simple flow
geometries. It is still an outstanding question why this type of mean velocity profiles
appears to be strong attractor of statistical turbulence. Furthermore, even if we do
assume that these mean profiles exist it is not obvious a priori to which real flow
region of plane shear flows the different functional forms for ū1 can be assigned.
DNS and experimental data need to be employed as shown in the next subsection.
However, it is important to note that group theoretical arguments very much guide
the finding of these flow regions where the ‘high symmetric’ mean velocity profiles
are applicable.

For the present purpose of finding mean velocities comprising a high degree of
symmetry the equations

dν

ξν
=

dx2

ξx2

=
dū1

ηū1

(3.13)

need to be considered since ū1 only depends on x2 and ν. Any other dependence is
excluded due to the geometrical constraints (2.8).

3.1. Determining the infinitesimals and the symmetry breaking property of (2.12)

Recall that, in the first step of the present approach the infinitesimal generators must
be determined from the equations (3.12a, b). This is accomplished using SYMM-
GRP.MAX, a package for MACSYMA (1996) written by Champagne et al. (1991).
As a result, an over-determined set of more than one hundred linear PDEs (not
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shown here) is obtained, whose solution is

ξx1
= a1(ν)x1 + a2(ν)x3 + f1(t, ν),

ξx2
= a1(ν)x2 + a3(ν),

ξx3
= a1(ν)x3 − a2(ν)x1 + f2(t, ν),

ξt = a4(ν)t+ a5(ν),

ξν = [2a1(ν)− a4(ν)]ν,

ηu1
= [a1(ν)− a4(ν)]u1 + a2(ν)u3 +

df1

dt
− g1(x2, ū1, p̄, ν),

ηu2
= [a1(ν)− a4(ν)]u2,

ηu3
= [a1(ν)− a4(ν)]u3 − a2(ν)[u1 + ū1] +

df2

dt

ηp = 2[a1(ν)− a4(ν)]p− x1

[
d2f1

dt2
+ [a1(ν)− 2a4(ν)]K

]
−x3

[
d2f2

dt2
− a2(ν)K

]
− g2(x2, ū1, p̄, ν) + f3(t, ν),

ηū1
= [a1(ν)− a4(ν)]ū1 + g1(x2, ū1, p̄, ν),

ηp̄ = 2[a1(ν)− a4(ν)]p̄+ g2(x2, ū1, p̄, ν).



(3.14)

Note that all of the undetermined functions in (3.14) depend upon viscosity. In
particular it should be remarked that the infinitesimal generator for ν does not have
any dependence on variables other than viscosity itself. Using this in conjunction with
Lie’s differential equation (3.8), from which the global transformation can be obtained,
it can be concluded that only symmetry transformation of the form ν∗ = f(ν) exist.

Later, for the derivation of the mean velocity profiles, it will be argued that, for the
flows to be focused on, the large Reynolds number limit is applicable and to leading
order any ν dependence will be neglected.

The generators (3.14) contain five undetermined functions: f1, f2, and f3 which
depend on t, and g1 and g2 which depend on x2, ū1, and p̄. The appearance of g1 and
g2 in the generators is due to the fact that the system consisting of (2.7) and (2.11) is
under-determined.

In particular, g1 allows for any arbitrary mean velocity ū1 in the equation (3.13). Of
course, this strongly contradicts experiments since the mean profiles always converge
to some kind of universal profile. Hence the additional constraint (2.12) is introduced
to determine the functional form of g1. This restriction is symmetry breaking in order
to find a definite form for the functions g1.

It has been pointed out at the end of § 2 that (2.12) is crucial to find self-similar mean
velocity profiles consistent with the second moment and all higher-order correlation
equations. Hence, the extended set of equations consisting of (3.12a–c) is considered
to compute the infinitesimals.

After the infinitesimals (3.14) have been determined from (3.12a, b) they may in
a second step be subjected to the additional restriction (3.12c). Carrying out the
differentiations in (3.12c) we find

Ni Xuj +Nj Xui + uj XNi + ui XNj = 0. (3.15)
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The last two terms do not contribute to the constraints for the infinitesimals since
Ni uj +Nj ui may be factored out. Due to (2.12) this term cancels. After applying the
operator X given by (3.11) the remaining first two terms in (3.15) become

Ni ηuj +Nj ηui = 0. (3.16)

The term Ni uj +Nj ui may again be separated out from (3.15). Since this term also
cancels out due to (2.12) we obtain the remaining restrictions

a2(ν)u3 +
df1

dt
− g1(x2, ū1, p̄, ν) = 0,

−a2(ν)[u1 + ū1] +
df2

dt
= 0,

 (3.17)

coming particularly from the infinitesimals ηu1
and ηu3

. Since (3.17) has to be true for
arbitrary values of its arguments we find the general solution

a2(ν) = 0,

f2(t, ν) = b3(ν),

g1(x2, ū1, p̄, ν) = b1(ν),

f1(t, ν) = b1(ν)t+ b2(ν).


(3.18)

This additional set of equations is symmetry breaking. The resulting reduced set of
final generators is given by

ξx1
= a1(ν)x1 + b1(ν)t+ b2(ν),

ξx2
= a1(ν)x2 + a3(ν),

ξx3
= a1(ν)x3 + b3(ν),

ξt = a4(ν)t+ a5(ν),

ξν = [2a1(ν)− a4(ν)]ν,

ηu1
= [a1(ν)− a4(ν)]u1,

ηu2
= [a1(ν)− a4(ν)]u2,

ηu3
= [a1(ν)− a4(ν)]u3,

ηp = 2[a1(ν)− a4(ν)]p+ g2(x2, ū1, p̄, ν)− x1[a1(ν)− 2a4(ν)]K + f3(t, ν),

ηū1
= [a1(ν)− a4(ν)]ū1 + b1(ν),

ηp̄ = 2[a1(ν)− a4(ν)]p̄− g2(x2, ū1, p̄, ν).



(3.19)

Using (3.13), the mean velocities may be computed, since g1 in (3.14) has been reduced
to b1(ν) in (3.19).

The infinitesimal generators (3.19) comprise all symmetries admitted by the equation
for the continuity (2.7), the equation for the velocity fluctuation (2.11) and the second-
order velocity product equation (2.12). It should be noted that b1(ν) corresponds to
the Galilean group in infinitesimal form. Apparently, the fluctuating quantities are
not affected by the Galilean group since none of the ηui contain b1(ν).

The consequences of (2.12) for the Galilean invariance of the mean and the
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fluctuating quantities may be more clearly understood on the basis of the global
variables. The Galilean transformation group of the instantaneous variables in its
general form is given by

t∗ = t, x∗i = xi + ait, U∗i = Ui + ai, P ∗ = P , (3.20)

where ai is an arbitrary constant vector of dimension velocity.
Employing the Reynolds decomposition (2.3) it is not obvious a priori whether the

arbitrary velocity ai ‘transfers’ to the mean or the fluctuating velocity or may even
split into different parts.

In the following it will be shown that the arbitrary velocity ai in (3.20) ‘moves’ to
the mean velocity. The most simple method of proving this is given by applying the
ensemble average operator (2.4) to (3.20). As a result we obtain

t∗ = t, x∗i = xi + ait, ū∗i = ūi + ai, p̄∗ = p̄, (3.21)

while from (2.3) it immediately follows that

u∗i = ui and p∗ = p. (3.22)

This invariant transformation can be verified by introducing (3.21) and (3.22) into
(2.5) and (2.7a). In fact, any other partition of ai between ūi and ui other than those
in (3.21) and (3.22) leads to a contradiction.

In the present case only plane steady shear flows are considered which leads to
the very restricted form of momentum equations (2.9a–c). Apart from near-wall
regions where viscosity plays a dominant role, the equations (2.9a–c) do not provide
any information on the mean velocity. Instead only certain Reynolds stresses can
be determined. In classical semi-empirical turbulence modelling approaches model
equations for the stresses have to be used which determine the mean velocity.

It is the paradox of plane shear flows that the mean velocity is determined by the
stresses while parts of the stresses are determined by the mean momentum equations.
This problem has to be accounted for also in the present context of finding mean
velocity profiles using symmetry methods.

The major difference between the classical turbulence modelling approach and
the present procedure is the treatment of equation (2.12). For the current treatment
averaging is not necessary and indeed not useful since additional unknown terms
would enter the set of equations. Instead (2.12) provides the necessary information
regarding the Galilean invariance. Since the mean momentum equations (2.9a–c) do
not give any information regarding the splitting of ai among ūi and ui this knowledge
is supplied by (2.12). It is obvious that (2.12) is only form-invariant under the Galilean
transformation group if the transformations (3.21) and (3.22) are employed.

In Appendix A it is shown that any scaling law for the velocity fluctuation and the
second-order velocity product equations (2.12) is also a scaling law for all nth-order
velocity product equations. The nth-order velocity product equations are defined
as the nth-order dyadic product of the velocity fluctuations with the equation for
the velocity fluctuations. Since the averaging procedure does not change the scaling
properties of the nth-order velocity product equations, it is also consistent with all
nth-order correlation equations. In the classical approach using correlation functions,
it may be difficult to show that all higher-order velocity correlations are consistent
with the scaling in the Reynolds stress equations. The Reynolds stress equations are
the first of an infinite sequence of correlation equations which need to be considered
in the classical approach in order to achieve the same level of consistency.
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3.2. Similarity and large Reynolds number limit

Up to this point dependence on viscosity or Reynolds number has not been discussed.
As shown by (3.19) all group parameters may depend on viscosity or Reynolds
number. As a result, which can also be taken from the infinitesimals in (3.19), the
functional form of the Reynolds number dependence may not be determined explicitly.

Nevertheless, turbulent flows exhibit the well-known feature of Reynolds number
independence as Reynolds number tends to infinity. This has been observed in a large
number of experiments (see e.g. Cantwell 1981). For the present purpose this fact
may be translated to an assumption for certain functions depending on ν. Namely,
it will be postulated that any function depending on ν is ‘well behaved’ in the sense
that it is not vanishing and not diverging as ν tends to zero.

In fact, this assumption is fully equivalent to an approach where viscosity had been
neglected right from the beginning and only the Euler equations had been considered.
The reason is the following. Investigating the Euler equations instead of the Navier–
Stokes equations leads to identical infinitesimals (3.14) and (3.19) with one exception.
There would be no ν dependence in any of the free functions such as ai or bi. Hence ai
or bi would be essentially constants. From this perspective we may conclude that if the
degenerate cases of ai or bi being zero are excluded all scaling laws to be obtained in
the following are dominated by the Euler terms or in other words by the inertial forces.

To this effect, the above small viscosity assumption is applied to the group param-
eters where it is assumed that

lim
ν→0

k(ν) = finite; (3.23)

k(ν) is a representative of any group parameter in (3.19). Hence, in the limit of small
viscosity or large Reynolds numbers, the leading-order form of ū1 and p̄ may be
assumed to be independent of viscosity. Note that this assumption does not restrict
the number or the functional form of the self-similar flow profiles to be computed
later. It simply restricts the constants appearing in the self-similar mean velocity
profiles to be independent of viscosity. An explicit Reynolds number dependence of
the scaling laws will be investigated in the future, as this functional dependence may
not be captured with the present analysis.

The equation (3.13) and the generators for x2, ν and ū1 in (3.19) can be combined
into

dν

[2a1 − a4]ν
=

dx2

a1x2 + a3

=
dū1

[a1 − a4]ū1 + b1

(3.24)

where the simplification (3.23) has already been implied. The last two equations
constitute the condition for ū1 comprising a maximum degree of symmetries.

In order to obtain mean velocity profiles from (3.24) the usual procedure is to
first integrate the set of equations for the independent variables. Here, this is the
equation on the left-hand side which for arbitrary and non-zero a1–a4 leads to
ζ = ν/(x2 + a3/a1)

2−a4/a1 where ζ is a constant of integration. In a second step the
equation on the right-hand side is integrated to ū1 = σ(x2 +a3/a1)

1−a4/a1−b1/(a1−a4)
where σ is a constant of integration. Usually, ζ and σ are taken as the new independent
and dependent variables respectively where σ may depend on ζ.

For the present purpose of investigating similarity mean velocity profiles in the large
Reynolds number limit one may follow (3.23) by presuming an equivalent assumption
for the dependence σ(ζ). Since ζ depends directly on ν it is taken that

lim
ν→0

σ(ζ) = finite. (3.25)
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Integrating the equation (3.24) by inferring (3.23) and (3.25) results in several
fundamentally different self-similar flow profiles for certain combinations of the
parameters contained in them.

Each of the group parameters in (3.24) or rather (3.19) has a distinct physical
meaning; a1 and a4 correspond to a scaling group. This corresponds to the fact that
all variables and parameters of the equation under consideration can be scaled by
an arbitrary factor without changing the structure of the equation. Since their role in
the solutions is particularly important a detailed discussion is given below. The group
parameter b1 conforms to the classical Galilean group. The Galilean boost has its
counterpart in the transformation of the x1-coordinate which, given in infinitesimal
form, corresponds to the second term on the right-hand side of the equation for ξx1

in (3.19). The parameter a3 corresponds to the translation group in the x2-direction.
The change of the origin of the coordinate x2 by the arbitrary parameter a3 does not
alter the equation under investigation.

The remaining parameters b2, b3, a5, g2 and f3 do not appear in the equation for
the mean velocity but illuminate important physical properties of the plane shear flow
case. Parameters b2 and b3 have a similar meaning as a3, i.e. the origin of the spatial
coordinates x1 and x3 can be altered without changing the underlying equations. The
function g2 still depends on x2, ū1 and p̄ in an unknown form. Since g2 appears in the
transformation of both the mean and fluctuating pressure the functional dependence
of the mean pressure cannot be determined. Beside its dependence on ν the function
f3 also depends on time t. This is a consequence of the Navier–Stokes equations for
an incompressible fluid. Therein the pressure only appears as a gradient. For this
reason the background pressure can arbitrarily be varied with time.

It is in particular the physical interpretation of the scaling parameters a1 and
a4 which is crucial in order to understand each scaling law to follow. For this
reason we give the global transformations which belong to the parameters a1 and
a4 by employing Lie’s differential equations (3.8) and (3.9). As a result the global
transformation is

x∗i = ea1xi, t∗ = ea4t, ν∗ = e2a1−a4ν, u∗i = ea1−a4ui,

p∗ = e2(a1−a4)p, ū∗1 = ea1−a4 ū1, p̄∗ = e2(a1−a4)p̄.

}
(3.26)

Consider the parameter a1: ea1 appears as a factor of all spatial coordinates in (3.26).
This means that all spatial coordinates can be scaled if the appropriate velocity scale
is also introduced. Suppose a given external length scale l, as a boundary value say, is
present in the flow under investigation. As a consequence, the scaling symmetry with
respect to the spatial coordinates is lost since l is a fixed quantity. Consequently, a1

can only be zero in (3.26). Subsequently, any of the parameters being zero is referred
to as a ‘broken symmetry’.

Each of the velocity profiles to be computed below and its associated symmetries
may be interpreted in terms of a given external length, time or velocity scale breaking
some of the scaling symmetries. Consider the case a4 = 0: from (3.26) it is deduced
that there is an external time scale acting on the flow and hence there is no scaling
symmetry with respect to the time t. If a1 = a4 the scaling symmetry for the velocities
is broken and as a consequence the time and length scales have the same scaling
properties. Any coordinate, in the latter cases x, t and u, is referred to as an invariant
if it does not admit a scaling symmetry. In the following, each of the self-similar flow
profiles integrated from the equations (3.24) will be explained separately.

A non-zero angular rotation rate will be considered only in § 3.4. In this case, the
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set of transformations to be obtained contains a reduced number of parameters. The
rotation rate will be considered as a branching parameter for the two cases Ω = 0
and Ω 6= 0.

3.3. Scaling of turbulent shear flows with zero system rotation

3.3.1. Algebraic mean velocity profile: a1 6= a4 6= 0 and b1 6= 0

The present case is the most general. No scaling symmetry is broken. As a result,
the mean velocity ū1 has the form

ū1 = C1(x2 + c1)
1−c2 − c3

1− c2

, (3.27)

where

c1 =
a3

a1

, c2 =
a4

a1

, c3 =
b1

a1

. (3.28)

In the domain where the algebraic mean velocity profile is valid, there is no external
length or velocity scale acting directly on the flow, as non-zero and unequal parameters
a1 and a4 are needed for its derivation. It will be pointed out in § 4 that the case of
an algebraic scaling law applies both in the vicinity of the wall, as has been suggested
by Barenblatt (1993) and George et al. (1993), as well as in the centre region of a
channel flow.

3.3.2. Logarithmic mean velocity profile: a1 = a4 6= 0 and b1 6= 0

For the present combination of parameters, the infinitesimals (3.19) demonstrate
that no scaling symmetry with respect to the velocities exists and hence an external
velocity scale is symmetry breaking. The mean velocity ū1 may be integrated to a
generalized form of the familiar log law

ū1 = d2 log (x2 + d1) + C2, (3.29)

with

d1 =
a3

a1

, d2 =
b1

a1

. (3.30)

In the case of the classical logarithmic law of the wall, it is the friction velocity uτ
which breaks the scaling symmetry for the velocities. The present case coincides with
the usual derivation of the logarithmic law of the wall where the friction velocity uτ
is the only velocity scale in the near-wall region. To date a logarithmic scaling law
has only been found in the vicinity of a wall where in the classical form the constant
d1 is set to zero.

Since the scaling symmetry with respect to the spatial variables (a1 6= 0) is still
retained the length scale varies linearly with the distance to the wall. This is an
assumption in the classical derivation of the log law of the wall but is a result of the
present analysis.

3.3.3. Exponential mean velocity profile: a1 = 0 and a4 6= b1 6= 0

Since a1 is zero in the present case, there exists an external length scale which
breaks the symmetry with respect to the spatial coordinates. As a result x is an
invariant with only a constant added to the infinitesimal in (3.19) resulting from the
frame invariance.

The mean velocity ū1 turns out to have the form

ū1 =
e2

e1

+ exp (−e1x2)C3, (3.31)
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where

e1 =
a4

a3

, e2 =
b1

a3

. (3.32)

It will be shown in § 4 that the present case applies to the flat-plate high Reynolds
number boundary layer flow. It appears that the boundary layer thickness is the
external length scale which is symmetry breaking.

3.3.4. Linear mean velocity profile: a1 = a4 = 0 and b1 6= a3 6= 0

In the present case there is an external velocity and length scale present in the flow
and all variables u, p, x and t are invariants and only the linear mean velocity profile
is a self-similar solution

ū1 =
b1

a3

x2 + C4. (3.33)

This profile applies in the viscous sublayer where ν/uτ and uτ are the symmetry-
breaking length and velocity scales respectively. Another example is the turbulent
Couette flow, where the symmetry is broken due to the moving wall velocity and
channel height. Both cases will be discussed in § 4.

3.4. Scaling laws of turbulent shear flows with non-zero system rotation

Here, the symmetries of the equations (2.7b), (2.11) and (2.12) with Ω 6= 0 are
considered. The infinitesimal generators obtained are very similar to those in (3.19),
with two differences. The most important difference is that

a4 = 0 (3.34)

is obtained and hence the scaling symmetry with respect to the time is lost. In addition,
a new term −2x2Ωb1 appears in ηp; this term corresponds to the fact that there is a
radial pressure gradient due to rotation.

Except that the scaling symmetry with respect to a4 is lost, the result is almost the
same as the algebraic scaling law (3.27) with c2 = 0

ū1 = C5Ωx2 + C6, (3.35)

where the constants incorporate a collection of other constants. The linear law applies
in the centre region of a rotating turbulent channel flow where the symmetry-breaking
time scale is the inverse of the rotation rate Ω. The present case is distinguished from
the previous linear mean velocity profiles, since a scaling of the spatial coordinates
still holds (a1 6= 0). As a result, the length scale varies linearly in the region of its
application, similar to the logarithmic region.

4. Experimental and numerical verification of the scaling laws
For any of the mean velocity profiles (3.27), (3.29), (3.31), (3.33) and (3.35), it is

not obvious a priori that they exist in experimental or DNS data of turbulent flows.
A proof of the fact that turbulence tends towards a high degree of symmetry if
initial and boundary conditions are consistent is still lacking, even though such mean
velocity profiles are found in innumerable experiments. In this section, experimental
and DNS data will be used to give empirical verification of the different scaling laws.

Some of the mean velocity profiles derived in the previous section have been
obtained previously by other methods and verified in several experiments and DNS
data. The best known result is von Kármán’s logarithmic law of the wall which
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has been verified in a large number of experiments since its derivation. Another
well-known mean velocity profile, derived in the previous section, is the linear mean
velocity which may be found in the viscous sublayer of the universal law of the wall,
and it is valid up to about y+ = 4.

Beside the latter two cases all other flow profiles will be investigated in the following
subsections. The first is the verification of the exponential law, which has never been
reported in the literature. This has been found to match a broad region in the outer
part of a turbulent boundary layer flow. The second one is the algebraic law, which fits
about 80% of the core region of the turbulent channel flow. In addition, the algebraic
scaling law has also been identified in the vicinity of the wall in low Reynolds number
DNS data of a turbulent channel flow. The third is the linear mean velocity profile
matching a broad region in a rotating channel flow. The slope of the linear part
scales with the rotation rate. The final test case is the plane Couette flow which also
exhibits a large linear section in the centre of the mean velocity profile. Both the latter
linear profiles are physically very distinct from each other since they have different
symmetry properties.

4.1. Zero pressure-gradient turbulent boundary layer flow

There is a considerable amount of data available for canonical boundary layer flows
(Gad-el-Hak & Bandyopadhyay 1994; Fernholz & Finley 1996), but the data are
generally for low Reynolds number and some contain too much scatter. For the
present purpose the data need to be very smooth. To avoid misinterpretation of the
results, extensive time averaging is required. This is because the velocity, rather than
the wall distance, will be plotted with logarithmic scaling. Due to the logarithmic
scaling of the y-axis, errors for small values of y are critical and may lead to wrong
conclusions.

Three sets of experimental data have been chosen for comparison with the expo-
nential velocity profile. These data are at medium to high Reynolds numbers, and
we believe that they have been taken very carefully. The data of D. DeGraaff (1996,
personal communication) are very smooth and cover the Reynolds number range
Reθ = 1500–20 000, where θ =

∫ ∞
0

(1 − ū/ū∞)ū/ū∞ dy is the momentum thickness
and ū∞ is the free-stream velocity. The second set of data is from Fernholz et al.
(1995) with the highest Reynolds number of Reθ = 60 000. The third data set, from
Saddoughi & Veeravalli (1994), reaches the highest available Reynolds number in a
laboratory of Reθ = 370 000.

Figure 1 shows DeGraaff’s data for the mean velocity profiles taken at six different
Reynolds numbers, in the usual wall variables in semi-log scaling. The extent of
the viscous subregion and the logarithmic region are visible, with extent depending
on the Reynolds number. In outer scaling the log region extends approximately to
y/∆ = 0.025 where ∆ =

∫ ∞
0

(ū∞ − ū)/uτ dy is the Rotta–Clauser length scale and uτ is
the friction velocity.

As has been pointed out above, there are strong indications that the exponential
law (3.31a) matches the outer part, the wake, of a high Reynolds number flat-plate
boundary layer flow, the reason being twofold. First, the usual law of the wake
or velocity defect law (ū∞ − ū1)/uτ = f(y/δ) may be written in the form (3.31) by
solving for ū1 where δ is a characteristic boundary layer thickness. Second, and most
important, it is the classical assumption that the macro length scale, such as the
integral length scale, is a constant in the domain of applicability of the wake law. It
is the symmetry breaking of the scaling of space by a constant length scale which in
fact led in § 3.3.3 to the exponential mean velocity profile (3.31).
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Figure 1. Mean velocity of the zero-pressure-gradient turbulent boundary layer in log-linear
scaling from DeGraaff (1996): ◦, Reθ = 1500; �, Reθ = 2300; �, Reθ = 3800; ×, Reθ = 8600;
+, Reθ = 15 000; 4, Reθ = 20 000; ——–, 2.41 ln (y+) + 5.1.

In order to match the result from the theoretical approach and the data, the
exponential mean velocity profile in equation (3.31a) will be re-written in outer
scaling

ū∞ − ū
uτ

= α exp
(
−β y

∆

)
, (4.1)

where α and β are universal constants.
In figure 2 the turbulent boundary layer data are plotted as log [(ū∞ − ū)/uτ] vs.

y/∆. If the data match the scaling law given by (4.1) they would fall on a straight
line. In the scaling of figure 2 the log region is valid up to y/∆ ≈ 0.025 and does
not follow the exponential (4.1). For all Reynolds number cases, there is no Reynolds
number dependence within the measurement accuracy, and all the data appear to
converge to a straight line in the region y/∆ ≈ 0.025− 0.15. The data of Saddoughi &
Veeravalli (1994) show a longer region for the exponential law up to about y/∆ ≈ 0.23.
With increasing Reynolds number the applicability of the exponential law appears to
increase. For the medium Reynolds number cases, the applicability is approximately
five to six times longer than the logarithmic law and for the high Reynolds number
case it is about eight to nine times longer.

The outer part of the boundary layer does not match the exponential (4.1) and
it appears that a weak Reynolds number dependence exists. This seems to be in
contradiction to results of Coles (1962) who found the wake parameter to be constant
for Reθ > 5000. However, several explanations can be given for this behaviour. It
is common to have a few percent of error in experimental data. Since the data are
plotted in log coordinates, and the free-stream velocity is subtracted, a few percent
error in the free-stream velocity has a large impact on the lower part of the curve. This
is almost invisible in the upper part. In fact from y/∆ ≈ 0.3 the data for the medium
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Figure 2. Mean velocity of the zero-pressure-gradient turbulent boundary layer in linear-log scaling
of the defect law: ◦, Reθ = 370 000 (Saddoughi & Veeravalli 1994); �, and �, Reθ = 60 000 (Fern-
holz et al. 1995); +, Reθ = 15 000 and×, Reθ = 20 000 (DeGraaff 1996); ——–, 10.34 exp (−9.46y/∆).

Reynolds number flows exhibit no clear trend. This is due to the error accumulation
coming from the difference of two almost equally large numerical values.

The value y/∆ ≈ 0.3 corresponds approximately to the boundary layer edge. It is
also possible that the outer-region large-scale intermittency plays a dominant role for
the scaling of the mean velocity.

If the exponential velocity profile (4.1) were valid over the entire boundary layer,
integration of (4.1) from zero to infinity would give α = β. A least-square fit approxi-
mates the latter equivalence with α = 10.34 and β = 9.46.

Even though the exponential (4.1) in figure 2 shows an excellent agreement with
the experimental data, one may object that, unlike the channel flow, boundary layer
flows are not strictly fully parallel flows. However, since the streamline curvature is
usually very small, the flow may be considered as locally parallel. The dependence on
the streamwise position is accounted for by the Rotta–Clauser length ∆ and hence
does not appear in the experimental results explicitly.

4.2. The two-dimensional turbulent channel flow

Most data for the turbulent channel flow exhibit too much scatter and cannot be used
for the present purpose. A fair comparison between data and an algebraic law may
only be made in log-log plots. Here the experimental data of Niederschulte (1996),
Wei & Willmarth (1989) and the low Reynolds number DNS data of Kim, Moin &
Moser (1987) will be used for the investigation of the algebraic scaling law.

Due to their simplicity, algebraic scaling laws have been traditionally used in fluid-
engineering applications to fit mean profiles in turbulent boundary layer data. A well
known example is the 1/7-law for the turbulent pipe flow (Schlichting 1979).

Here another algebraic regime is found where the origin of the independent coordi-
nate is not the wall but rather the centre of the channel. The region of validity of an
algebraic scaling law near the centre-line appears to be more clear than for the near-
wall region. The reason for that may be found in the infinitesimal generators (3.19).
Since for the algebraic scaling law, both constants a1 and a4 have to be non-zero and
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Figure 3. Mean velocity of the turbulent channel flow in log-log defect law scaling: ◦, Rec = 40 000;
�, Rec = 23 000 Wei & Willmarth (1989);�, Rec = 18 000 Niederschulte (1996); ——–, 5.83(y/b)1.69.

distinct, the region for which the algebraic scaling law applies has the highest degree
of symmetry. The centre region seems to be more suitable for that; in the near-wall
region, uτ is symmetry breaking, which results in a1 = a4 and eventually leads to the
log law.

Regarding the algebraic law in the centre of the channel, the appropriate outer
scaling for the channel is similar to the turbulent boundary layer flow

ūc − ū
uτ

= ϕ
(y
b

)γ
, (4.2)

where ϕ and γ are constants, y originates on the channel centreline, ūc is the centreline
velocity and b is the channel half-width.

In figure 3 the data of Wei & Willmarth (1989) and Niederschulte (1996) have
been plotted in log-log scaling for the Reynolds number range Rec = 18 000–40 000,
where Rec is based on the centreline velocity and channel half-width. Even though
the data exhibit some scatter, there is a clear indication that the centre region up to
about y/b = 0.8 closely follows an algebraic scaling law given by (4.2). The unknown
constants in (4.2) have been fitted to ϕ = 5.83 and γ = 1.69 using Niederschulte’s
data. We believe that Niederschulte’s experiment has been done very carefully and
the algebraic scaling law extends a long way towards the centreline.

An even more profound indication regarding the algebraic law may be obtained
from the DNS data of Kim et al. (1987). In figure 4, the data are plotted with log-log
scaling and an almost perfectly straight line is visible for both Rec = 3300 and 7900
from the centreline up to about y/b = 0.75. The scaling extends slightly further out
for the Rec = 7900 case. Since both Reynolds numbers in the DNS are low, a weak
Reynolds number dependence of both ϕ and γ exists.

At this point it may be instructive to refer to a recent result of Oberlack (1999)
who analysed circular parallel turbulent shear flows with respect to the self-similarity
using the present approach. For this case he also found the existence of an algebraic
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Figure 4. Mean velocity of the turbulent channel flow in double-log defect-law scaling from
Kim et al. (1987): ——–, Rec = 7900; – – –, Rec = 3300.

scaling law. Oberlack analysed the high Reynolds number data of Zagarola (1996)
and found an almost perfect fit, covering 80% of the centre of the pipe.

In Appendix B the two-point correlation equations have been analysed with respect
to their self-similarity for a parallel shear flow. The resulting equation for the mean
flow (B 9) is fully equivalent to (3.24a). New scaling laws for the two-point correlations
are obtained.

Hunt et al. (1987) have analysed the two-point correlations with respect to self-
similarity using the data of Kim et al. (1987). They investigated the near-wall region
assuming the logarithmic law to hold. The surprising result here is that the self-
similarity of R22 extends much further towards the centreline than might be expected
from the fairly short extent of the log region in the mean flow. The result could be
clarified using the fact that the near-wall region does not follow a log, but rather
an algebraic, scaling law. Figure 5 shows the mean velocity of the channel flow data
in log-log coordinates. Up to about y+ = 4 the linear law of the viscous sublayer is
valid. In the range 50 < y+ < 250 for Rec = 7900 an almost perfectly straight line
is visible and a least-square fit of an algebraic law in this range results in a much
higher correlation coefficient than a least-square fit of a logarithmic function. Since
the algebraic law extends much further than a logarithmic law, it is also expected
that the self-similarity of the two-point correlation R22 holds much further. The only
difference for R22 regarding the two different scaling laws is that, in case of the
algebraic scaling law, R22 also scales with the wall distance, while for the log law, this
is not the case, as may be deduced from equation (B 13).

4.3. The rotating two-dimensional turbulent channel flow

System rotation is known to have a strong influence on turbulence. With increasing
rotation rate a turbulent flow tends to become more two-dimensional while the axis
of independence is aligned with the rotation vector. As a consequence, the mean
velocity is also significantly affected as for example in the present case of a rotating
two-dimensional channel flow where the rotation axis is parallel to the mean vorticity
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Figure 5. Mean velocity of the turbulent channel flow in log-log scaling from Kim et al. (1987):
——–, Rec = 7900; – – –, Rec = 3300.

vector. Compared to the non-rotating channel flow, which exhibits the highest degree
of symmetry in the centre region of the flow, here the external time scale Ω−1 is
symmetry breaking which leads to a4 = 0. This affects in particular the centre region
of the flow which appears to become linear. This result can also be obtained from
employing a4 = 0 in equation (3.24). However, in contrast to the turbulent Couette
flow, to be discussed in the following subsection, a scaling symmetry with respect to
the spatial coordinates still exists (a1 6= 0).

An early experimental investigation of the present flow problem has been done by
Johnston, Halleen & Lazius (1972) who obtained a linear centre region at sufficiently
high rotation rates. Equation (3.35a) may be rewritten as

ū1 = σ1Ωx2 + σ2. (4.3)

A recent DNS of Kristoffersen & Andersson (1993) also confirmed this form of
the mean velocity profiles. Their results are shown in figure 6 for two different
rotation rates. The data are presented employing the rotation number Ro = 2|Ω|h/ūm,
a non-dimensional measure of the rotation rate. Both Johnston et al. (1972) and
Kristoffersen & Andersson (1993) found the slope coefficient in (4.3) to be σ1 ≈ 2.

It has already been recognized in the literature that that value coincides with zero
absolute vorticity 2Ω − dū1/dx2. An additional feature of this particular value for σ1

is that the linear region of the flow becomes neutrally stable. An overview on the
literature regarding these flow characteristics is given in Kristoffersen & Andersson
(1993).

4.4. The turbulent plane Couette flow

Even though a linear mean velocity profile is also obtained for the present flow it
is very distinct from the previous test case. Here, the lowest degree of symmetry is
considered where a length and a velocity scale dominate the flow and both scaling
symmetries in (3.24) are broken (a1 = a4 = 0). Hence, comparing to (4.3), scaling with
respect to the spatial coordinate is also lost. It appears that the present case applies
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Figure 6. Mean velocity of the rotating two-dimensional turbulent channel flow from
Kristoffersen & Andersson (1993): – – –, Ro = 0.2; ——–, Ro = 0.5.

to the turbulent plane Couette flow. The mean velocity may be written as

ū1 = ϑ1

uw

h
x2 + ϑ2, (4.4)

where h and uw are the channel half-width and the wall velocity, respectively, and ϑ1

and ϑ2 are constants.
Several experimental and numerical investigations of the plane Couette flow have

been reported in the literature. An overview on the literature is given in Bech et al.
(1995). The experimental work by El Telbany & Reynolds (1980) and the DNS data
by Lee & Kim (1991) have been depicted in figure 7. With relatively high accuracy
about 80% of the centre region is fitted by the linear mean velocity profile. The slopes
of experimental and numerical results appear to be slightly different. This may be a
Reynolds number effect since both data sets are taken at different and comparably
low Reynolds numbers. In the near-wall region other scaling laws become dominant.

As already mentioned, a second linear mean velocity profile, which is also dominated
by two external scales, is the viscous sublayer. Here, the scales are ν/uτ and uτ, the
viscous length scale and the friction velocity, respectively. This case is very well know
and can be verified in figure 5.

5. Discussion and conclusions
It has been demonstrated by the application of Lie group ideas to plane parallel

turbulent shear flows that a large class of solutions for the mean velocity can be
computed. These flow profiles include the logarithmic law of the wall, an algebraic
law, and a linear profile; a new exponential mean profile has also been found.

Two different aspects of the present approach are distinct from earlier investigations
seeking self-similar flow profiles in parallel shear flows. First, using Lie group analysis,
it is guaranteed that all self-similar solutions of the equation under investigation will
be obtained. The Lie group approach also covers all results derived from dimensional
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Figure 7. Mean velocity in turbulent plane Couette flow: ◦, El Telbany & Reynolds (1980);
——–, Lee & Kim (1991).

analysis (Bluman & Kumei 1989). The theory is fully algorithmic and no intuition is
needed to find a self-similar mean velocity profile.

Second, the underlying equations used in the present approach are not the mean
momentum and the Reynolds stress equations, as used in many previous investiga-
tions (Townsend 1976). Instead, symmetries in the set of equations consisting of the
equations for the velocity fluctuations (2.11), and the velocity product equations (2.12)
are analysed. The approach based on these equations has the following advantage:
as shown in Appendix A their invariance is a sufficient condition to have all the flow
profiles consistent with all higher-order correlation equations.

However, the converse is not true. There is still a small likelihood of the second-
order and higher correlation equations admitting certain symmetries which are not
detected by the present approach. This point bears further investigation.

Using DNS and experimental data the exponential and algebraic laws have been
demonstrated to be valid in the outer part of boundary layer and channel flows
respectively. For the turbulent boundary layer, high-quality data are available, and
there is little doubt regarding the existence of an exponential region. For the turbulent
channel flow, the DNS data exhibit an almost perfect algebraic centre region, but
the data are at low Reynolds number and show Reynolds number dependence of the
scaling law parameters. The experimental data also clearly show the algebraic region,
but contain more scatter.

One may argue that a channel flow is not an appropriate example for the algebraic
scaling law since in its derivation no external time or velocity scales are allowed. The
underlying reason from Lie group analysis has been discussed in some detail in § 3. In
a turbulent channel flow, the length and the velocity scales are given by the channel
width and the friction velocity respectively. However, from the data presented, it is
quite clear that the algebraic law is valid in the centre of a channel flow. Using this
experimental result, one may draw the following conclusion, which also holds for the
other scaling laws: All the scaling laws have a limited range of applicability. Beyond
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a certain limit, a scaling law does not ‘feel’ the length, time or velocity scale locally
imposed on some region of the flow, and a higher degree of symmetry may be reached
if no other restriction applies. In case of the channel flow, the algebraic scaling law
is embedded between two log regions. Neither the friction velocity nor the channel
width is symmetry breaking.

Another algebraic scaling law in the vicinity of the wall has already been derived
by Barenblatt (1993) and George et al. (1993). It has also been computed in the
present investigation and could be confirmed using the low Reynolds number DNS
data of Kim et al. (1987).

Three linear mean velocity profiles have been identified in experimental and in
DNS data. It appears that from a symmetry point of view the well-known viscous
sublayer and the turbulent Couette flow have similar group characteristics. In both
cases a length and a velocity scale is symmetry breaking. Data for a rotating channel
flow exhibit a third linear mean velocity profile with its slope scaling with Ω. This
profile is distinct from the two other cases since only one scaling symmetry with
respect to the time is lost: a scaling symmetry with respect to the spatial coordinate
still exists.

In Appendix B all results for the mean flow have also been derived by applying
the Lie symmetry approach to the two-point correlation equations. For the two-point
correlation tensor an empirical finding of Hunt et al. (1987) has been confirmed. They
found self-similarity of the two-point correlation tensor in the vicinity of the wall and
assumed that this corresponds to the log region. However, in § 4 it was shown that
the region they have analysed is more likely to be an algebraic region. Nevertheless,
the present findings are in full agreement with their observations.

It may be concluded from the present analysis and some results for cylindrical flows
(Oberlack 1999) that a high degree of symmetry is a preferred state of turbulence
if allowed by initial and boundary conditions. This observation appears to be a
fundamental property of turbulence and the following working hypothesis may be
formulated:

Hypothesis: The mean velocity ūi in an incompressible turbulent flow establishes a
maximum degree of symmetry consistent with the equations (2.5)–(2.7) and (2.12) and
the initial and the boundary condition.

The hypothesis is formulated in a very general form. It could be argued that it is
too optimistic to think that this hypothesis holds for a more complex flow. However,
one should keep in mind that the present approach was restricted to a plane and
parallel flow. Relaxing this limitation will eventually result in much more general
flows as has already been shown by Oberlack (1999).

An important application of the present approach is turbulence modelling. Many
common statistical turbulence models may not be consistent with all the symmetries
calculated in the present approach and hence will not capture the associated scaling
laws. As an example consider the standard k–ε model which, interestingly, formally
admits all symmetries of the time-dependent three-dimensional Navier–Stokes equa-
tions (see Khor’kova & Verbovetsky 1995). This is somewhat misleading, since this
does not guarantee the correct behaviour for lower dimensional cases such as plane
shear flows.

The standard k-ε model captures some non-trivial scaling laws, such as the ex-
ponential law. However, it may be shown that in the case of a turbulent rotating
channel flow the symmetry groups of the k–ε model are not consistent with the present
finding. As a result, this model misses the correct linear region in the centre of the
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channel flow. In fact, the inability of the k–ε model to properly predict the rotating
channel flow can be traced back to too many symmetries. In § 3.4 it was shown that
the rotation rate Ω is symmetry breaking for the scaling of time which leads to the
linear region. By contrast, scaling of time is still admitted by the k–ε model even when
rotation is present.

These findings may be used to develop new or improve existing turbulence models.
We propose that turbulence models should have the symmetry properties computed
in the present analysis. This is a necessary condition in order to capture the turbulent
scaling laws and the associated turbulent flows present herein. The presented symmetry
properties in turbulent flows may be considered as a new realizability concept.

A fundamental question which could not be resolved so far is why turbulence
relaxes to a self-similar mean velocity profile under certain boundary and initial
conditions. Heuristically speaking, self-similar flow profiles are those solutions which
may be expressed by a lower number of independent variables. It appears that, in
certain regions, turbulence has some tendency towards a low-dimensional state for the
mean quantities. In addition the fundamental mechanism which fixes the constants
in the scaling laws is still unknown. The constants in the scaling laws appear to be
universal for high Reynolds number flows. Furthermore, there may be some relation
between certain constants. A semi-empirical approach has been developed by Roth
(1970) to find a relation between von Kármán’s and Kolmogorov’s constants. These
and other questions will be the topic of future research.

The author is very much indebted to Thomas R. Bewley, Peter Bradshaw, Brian
J. Cantwell, William K. George, Nail H. Ibragimov, Krishnan Mahesh, William C.
Reynolds and Seyed G. Saddoughi for giving valuable comments. The author is in
particular thankful to Javier Jimenez for discussing some physical interpretations
of the symmetry groups. Furthermore he thanks Dave DeGraaff, Robert D. Moser,
Seyed G. Saddoughi, Martin Schober and Timothy Wei for the kind cooperation and
their provision of the data. Finally, he would like to thank Willy Hereman who was
extremely patient in answering all questions regarding the Lie group package SYMM-
GRP.MAX. The work was in part supported by the Deutsche Forschungsgemeinschaft
under grant number Ob 96/2-1.

Appendix A. Proof of consistency with higher-order velocity product
equations

It will be shown that the generators (3.19) are not only consistent with the equations
for second-order velocity product uiuj , but also with the equations for all higher-order
velocity products ui1ui2 . . . uin−1

uin . As a result all flow profiles derived in the present
paper are also solutions of all higher-order velocity product equations.

The equation for the velocity product of any arbitrary order n is given by

Mi1i2 ...in−1in = ui1ui2 · · · · · uin−1
Nin + ui1ui2 · · · · · uin−2

Nin−1
uin

+ · · ·+ ui1Ni2ui3 · · · · · uin−1
uin +Ni1ui2 · · · · · uin−1

uin = 0. (A 1)

The twice prolongated operator (3.11) together with the generators (3.19) may be
written as

X = (a1 − a4)uj
∂

∂uj
+ X̂ (A 2)
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where X̂ contains all other derivatives with respect to the remaining variables in (3.4)
and also all prolongations.

All higher-order velocity product equations (A 1) are consistent with the mean
velocity profiles given in § 3 if the operator (A 2) applied to equation (A 1) is identically
zero.

To show this, the operator (A 2) will be applied to equation (A 1). Using (3.12b)
and noting that X̂ in the operator (A 2) does not act on ul , one may verify that

XMi1i2 ...in−1in = (ui1ui2 · · · · · uin−1
Nin + ui1ui2 · · · · · uin−2

Nin−1
uin + · · ·+ ui1Ni2ui3

· · · · · uin−1
uin +Ni1ui2 · · · · · uin−1

uin)(a1 − a4)(n− 1). (A 3)

Since (A 3) can be combined with (A 1) it is obvious that the latter equation is
identically zero.

Appendix B. Two-point correlation approach
A similar approach to analyse symmetries in parallel shear flows can be made by

investigating the two-point correlation equations given by

DRij
Dt

= −Rkj ∂ūi(x, t)
∂xk

− Rik ∂ūj(x, t)
∂xk

∣∣∣∣
x+r
− [ūk (x+ r, t)− ūk (x, t)]

∂Rij

∂rk

−
[
∂puj

∂xi
− ∂puj

∂ri
+
∂uip

∂rj

]
+ ν

[
∂2Rij

∂xk∂xk
− 2

∂2Rij

∂xk∂rk
+ 2

∂2Rij

∂rk∂rk

]

−∂R(ik)j

∂xk
+

∂

∂rk
[R(ik)j − Ri(jk)]− 2Ωk[ekliRlj + ekljRil], (B 1)

where

Rij(x, r) = ui(x) uj(x′),

R(ik)j(x, r) = ui(x) uk(x) uj(x′), Ri(jk)(x, r) = ui(x) uj(x′) uk(x′),

puj(x, r) = p(x) uj(x′), ujp(x, r) = uj(x) p(x′),

 (B 2)

and D/Dt = ∂/∂t + ūk∂/∂xk . The tensors in (B 2) are functions of the physical and
the correlation space coordinates, x and r = x′ − x respectively.

The divergences ∂/∂xi − ∂/∂ri and ∂/∂rj applied to (B 1) yield the two-point
pressure–velocity correlation equations,

∂2puj

∂xk∂xk
− 2

∂2puj

∂rk∂xk
+
∂2puj

∂rk∂rk
= −2

[
∂ūk(x, t)

∂xl
+ emlkΩm

] [
∂Rlj

∂xk
− ∂Rlj

∂rk

]

−
[
∂2R(kl)j

∂xk∂xl
− 2

∂2R(kl)j

∂xk∂rl
+
∂2R(kl)j

∂rk∂rl

]
(B 3)

and
∂2uip

∂rk∂rk
= −2

[
∂ūk(x, t)

∂xl

∣∣∣∣
x+r

+ emlkΩm

]
∂Ril

∂rk
− ∂2Ri(kl)

∂rk∂rl
(B 4)

respectively.
The vertical lines in (B 1) and (B 4) denote that the derivatives are taken with

respect to x, and evaluated at x+r. It is this non-local behaviour of the mean velocity
which makes it difficult to apply two-point correlations to inhomogeneous flows.
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For the derivation of a non-parametric symmetry in the two-point correlation
equations, the following two identities are needed. They may be derived from a
geometrical consideration by interchanging the two points x and x′ = x+ r; i.e.

Rij(x, r; t) = Rji(x+ r,−r; t), (B 5a)

uip(x, r; t) = pui(x+ r,−r; t). (B 5b)

A similar identity may be derived for the triple correlation.

B.1. Symmetries in the two-point correlation equations

The symmetries and results for the mean velocity profiles may also be derived by
means of the two-point correlation equations. In addition, some new results for the
two-point correlation tensor are obtained.

For this purpose, a small modification of the approach used in § 3 is introduced.
The mean velocity ū1 is not considered a variable in the infinitesimal transformation,
but is treated as an unknown function of x2. This method is called group classification
(see e.g. Ibragimov 1994/1995). Solving the equations for the infinitesimal generators,
it turns out that an ODE for ū1 is derived, which is equivalent to the ODE for ū1

given in equation (3.24a).
The general problem when applying Lie group methods to the two-point correlation

equation is the coupling of the second moments to the infinite number of higher-order
correlations. Of course, this cannot be taken into account in the symmetry calculation.
A reduced system of equations is therefore analysed. From a mathematical point of
view, the approach in this Appendix does not ensure that all the calculated symmetries
are consistent with all higher-order correlations.

For the symmetries in the two-point correlation equation to follow, some simpli-
fications have been introduced. Apart from the parallel flow assumption (2.8), only
the inviscid equations will be considered. Using these restrictions, only the equations
for R22 in (B 1), pu2 in (B 3) and u2p in (B 4) need to be examined, because these
equations decouple from the other components in the tensor equations.

Equivalent to the approach in § 3, the symmetries of the 22-component of the
equations (B 1)–(B 4) are derived by application of the operator

Y = ξr1
∂

∂r1
+ ξr2

∂

∂r2
+ ξr3

∂

∂r3
+ ξx2

∂

∂x2

+ηR22

∂

∂R22

+ ηpu2

∂

∂pu2

+ ηu2p

∂

∂u2p
+ ηR(2k)2

∂

∂R(2k)2

+ ηR2(2k)

∂

∂R2(2k)

, (B 6)

and its second prolongation to the 22-component of the equations (B 1)–(B 4). This
results in the generators

ξr1 = q1r1 + q2, ξr2 = q1r2, ξr3 = q1r3 + q3, ξx2
= q1x2 + q4,

ηR22
= q5R22, ηpu2

= q6pu2, ηu2p = q6u2p,

ηR(2k)2
= q6R(2k)2, ηR2(2k)

= q6R2(2k).

 (B 7)

As an additional result of solving the determining equations, a second-order ODE
for the mean flow emerges, i.e.

d2ū1

dx2
2

[q1x2 + q4] +
dū1

dx2

[q1 + q5 − q6] = 0 (B 8)
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since ū1 was treated as an unknown function. Equation (B 8) can be integrated once
to give

dū1

dx2

[q1x2 + q4] + ū1[q5 − q6] = c. (B 9)

It is equivalent to the ODE for ū1 derived in (3.24).
The equations for the invariant surface are given by

dr1
ξr1

=
dx2

ξx2

,
dr2
ξr2

=
dx2

ξx2

,
dr3
ξr3

=
dx2

ξx2

. (B 10)

Taking q1 6= 0, the equations (B 10) are integrated and the constants of integration
are taken as the new independent variables

r̃1 =
r1

x2 + (q4/q1)
, r̃2 =

r2

x2 + (q4/q1)
, r̃3 =

r3

x2 + (q4/q1)
. (B 11)

This corresponds to both the algebraic and the logarithmic law, (3.27) and (3.29)
respectively. The new dependent variables are calculated by solving the three equations
for the invariants

dR22

ηR22

=
dx2

ξx2

,
dpu2

ηpu2

=
dx2

ξx2

,
du2p

ηu2p

=
dx2

ξx2

,
dR(2k)2

ηR(2k)2

=
dx2

ξx2

,
dR2(2k)

ηR2(2k)

=
dx2

ξx2

, (B 12)

where the constants of integration are taken as the new dependent variables:

R22 =

(
x2 +

q4

q1

)q5/q1

R̃22, pu2 =

(
x2 +

q4

q1

)q6/q1

p̃u2, u2p =

(
x2 +

q4

q1

)q6/q1

ũ2p,

R(2k)2 =

(
x2 +

q4

q1

)q6/q1

R̃(2k)2, R2(2k) =

(
x2 +

q4

q1

)q6/q1

R̃2(2k). (B 13)

If q5 = q6, then the log law holds, as may be deduced from equation (B 9). If
a5 6= a6, (B 9) may be integrated to an algebraic function.

Using the similarity coordinates (B 11) and (B 13) in (B 1), (B 3) and (B 4) and
considering either the algebraic or the logarithmic scaling law, the dimension of the
two-point correlation equations may be reduced by one.

When q1 = 0, the exponential law holds and from (B 10) and (B 12) the new
similarity variables can be integrated to obtain

r̂1 = r1 +
q2

q4

x2, r̂2 = r2, r̂3 = r3 +
q3

q4

x2, (B 14)

and

R22 = e(q5/q4)x2R̂22, pu2 = e(q6/q4)x2 p̂u2, u2p = e(q6/q4)x2 û2p,

R(2k)2 = e(q6/q4)x2R̂(2k)2, R2(2k) = e(q6/q4)x2R̂2(2k). (B 15)

Introducing (B 15) into (B 1), (B 3) and (B 4), the number of independent variables
is reduced by one.

Next, consider the classical log region which comprises the further restriction
q4 = 0. The identities (B 5) may be transformed in a similar manner. Oberlack (1995)
has shown that this yields a non-local relation for Rij . Introducing the transformation
(B 11) into the equation (B 5a), the relation Rij(x2, x2r̃) = Rji(x2(1 + r̃2),−x2r̃) is
obtained. Assuming that all two-point correlation functions depend solely on the
similarity variable (B 11), only the ratio of the first and the second parameters may
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appear in this identity for Rij . This argument may be extended to the pressure–velocity
correlation. Thus, the final result is

Rij(r̃) = Rji

( −r̃
1 + r̃2

)
(B 16)

and

uip(r̃) = pui

( −r̃
1 + r̃2

)
. (B 17)

The latter identity also holds if uip and pui are interchanged.
These two relations give insight into the structure of the solution. Relation (B 16)

connects different r̃ domains to each other and describes non-local behaviour in
correlation space. This is useful, when interpreting two-point correlations in wall
bounded flows, obtained from experimental or DNS data.

Note that the self-similar form of Rij(r̃) has been previously introduced by Hunt
et al. (1987) as a working hypothesis when analysing DNS data of a low Reynolds
number channel flow. Their study clearly validates the self-similarity of Rij based on
the similarity variables (B 11).
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Ünal, G. 1994 Application of equivalence transformations to inertial subrange of turbulence. Lie
Groups Applics 1(1), 232–240.
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